Efficient Continuous-Time Markov Chain Estimation
نویسندگان
چکیده
Many problems of practical interest rely on Continuous-time Markov chains (CTMCs) defined over combinatorial state spaces, rendering the computation of transition probabilities, and hence probabilistic inference, difficult or impossible with existing methods. For problems with countably infinite states, where classical methods such as matrix exponentiation are not applicable, the main alternative has been particle Markov chain Monte Carlo methods imputing both the holding times and sequences of visited states. We propose a particle-based Monte Carlo approach where the holding times are marginalized analytically. We demonstrate that in a range of realistic inferential setups, our scheme dramatically reduces the variance of the Monte Carlo approximation and yields more accurate parameter posterior approximations given a fixed computational budget. These experiments are performed on both synthetic and real datasets, drawing from two important examples of CTMCs having combinatorial state spaces: string-valued mutation models in phylogenetics and nucleic acid folding pathways.
منابع مشابه
Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression
The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first...
متن کاملEfficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes
We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type process driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of the continuous martingale part. We use a thresholding technique ...
متن کاملAn EM Algorithm for Continuous-time Bivariate Markov Chains
We study properties and parameter estimation of finite-state homogeneous continuous-time bivariate Markov chains. Only one of the two processes of the bivariate Markov chain is observable. The general form of the bivariate Markov chain studied here makes no assumptions on the structure of the generator of the chain, and hence, neither the underlying process nor the observable process is necessa...
متن کاملMapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters
The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...
متن کاملInference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کامل